企业管理培训,亚洲伦理精品,企业培训公开课,亚洲伦理电影,企业内训课程,亚洲伦理,企业培训师 - 名课堂企业管理培训网

名課堂 - 企業(yè)管理培訓網(wǎng)聯(lián)系方式

聯(lián)系電話:400-8228-121

值班手機:18971071887

Email:Service@mingketang.com

企業(yè)管理培訓分類導航

企業(yè)管理培訓公開課計劃

企業(yè)培訓公開課日歷

研發(fā)管理培訓公開課

研發(fā)管理培訓內(nèi)訓課程

熱門企業(yè)管理培訓關鍵字

您所在的位置:名課堂>>公開課>>研發(fā)管理培訓公開課

Python大數(shù)據(jù)核心技術實戰(zhàn)

【課程編號】:MKT043949

【課程名稱】:

Python大數(shù)據(jù)核心技術實戰(zhàn)

【課件下載】:點擊下載課程綱要Word版

【所屬類別】:研發(fā)管理培訓

【時間安排】:2025年10月27日 到 2025年10月30日7800元/人

2024年11月11日 到 2024年11月14日7800元/人

2023年12月18日 到 2023年12月21日7800元/人

【授課城市】:蘇州

【課程說明】:如有需求,我們可以提供Python大數(shù)據(jù)核心技術實戰(zhàn)相關內(nèi)訓

【其它城市安排】:珠海 成都 杭州 北京 深圳 上海 太原 天津 長沙 中山 福州 重慶 惠州 廈門 廣州 大連 東莞 長春 青島

【課程關鍵字】:蘇州Python培訓

我要報名

咨詢電話:
手  機: 郵箱:
課程目標

1.每個算法模塊按照“原理講解→分析數(shù)據(jù)→自己動手實現(xiàn)→特征與調(diào)參”的順序。

2.“Python數(shù)據(jù)清洗和特征提取”,提升學習深度、降低學習坡度。

3.增加網(wǎng)絡爬蟲的原理和編寫,從獲取數(shù)據(jù)開始,重視將實踐問題轉換成實際模型的能力,分享工作中的實際案例或Kaggle案例:廣告銷量分析、環(huán)境數(shù)據(jù)異常檢測和分析、數(shù)字圖像手寫體識別、Titanic乘客存活率預測、用戶-電影推薦、真實新聞組數(shù)據(jù)主題分析、中文分詞、股票數(shù)據(jù)特征分析等。

4.強化矩陣運算、概率論、數(shù)理統(tǒng)計的知識運用,掌握機器學習根本。

5.闡述機器學習原理,提供配套源碼和數(shù)據(jù)。

6.以直觀解釋,增強感性理解。

7.對比不同的特征選擇帶來的預測效果差異。

8.重視項目實踐,重視落地。思考不同算法之間的區(qū)別和聯(lián)系,提高在實際工作中選擇算法的能力。

9.涉及和講解的部分Python庫有:Numpy、Scipy、matplotlib、Pandas、scikit-learn、XGBoost、libSVM、LDA、Gensim、NLTK、HMMLearn。

課程目標

本課程特點是從數(shù)學層面推導最經(jīng)典的機器學習算法,以及每種算法的示例和代碼實現(xiàn)(Python)、如何做算法的參數(shù)調(diào)試、以實際應用案例分析各種算法的選擇等。

培訓對象

大數(shù)據(jù)分析應用開發(fā)工程師、大數(shù)據(jù)分析項目的規(guī)劃咨詢管理人員、大數(shù)據(jù)分析項目的IT項目高管人員、大數(shù)據(jù)分析與挖掘處理算法應用工程師、大數(shù)據(jù)分析集群運維工程師、大數(shù)據(jù)分析項目的售前和售后技術支持服務人員

課程大綱

模塊一 機器學習的數(shù)學基礎1 - 數(shù)學分析

1. 機器學習的一般方法和橫向比較

2. 數(shù)學是有用的:以SVD為例

3. 機器學習的角度看數(shù)學

4. 復習數(shù)學分析

5. 直觀解釋常數(shù)e

6. 導數(shù)/梯度

7. 隨機梯度下降

8. Taylor展式的落地應用

9. gini系數(shù)

10. 凸函數(shù)

11. Jensen不等式

12. 組合數(shù)與信息熵的關系

模塊二 機器學習的數(shù)學基礎2 - 概率論與貝葉斯先驗

1. 概率論基礎

2. 古典概型

3. 貝葉斯公式

4. 先驗分布/后驗分布/共軛分布

5. 常見概率分布

6. 泊松分布和指數(shù)分布的物理意義

7. 協(xié)方差(矩陣)和相關系數(shù)

8. 獨立和不相關

9. 大數(shù)定律和中心極限定理的實踐意義

10. 深刻理解最大似然估計MLE和最大后驗估計MAP

11. 過擬合的數(shù)學原理與解決方案

模塊三 機器學習的數(shù)學基礎3 - 矩陣和線性代數(shù)

1. 線性代數(shù)在數(shù)學科學中的地位

2. 馬爾科夫模型

3. 矩陣乘法的直觀表達

4. 狀態(tài)轉移矩陣

5. 矩陣和向量組

6. 特征向量的思考和實踐計算

7. QR分解

8. 對稱陣、正交陣、正定陣

9. 數(shù)據(jù)白化及其應用

10. 向量對向量求導

11. 標量對向量求導

12. 標量對矩陣求導工作機制

模塊四 Python基礎1 - Python及其數(shù)學庫

1. 解釋器Python2.7與IDE:Anaconda/Pycharm

2. Python基礎:列表/元組/字典/類/文件

3. Taylor展式的代碼實現(xiàn)

4. numpy/scipy/matplotlib/panda的介紹和典型使用

5. 多元高斯分布

6. 泊松分布、冪律分布

7. 典型圖像處理

8. 蝴蝶效應

9. 分形與可視化

模塊五 Python基礎2 - 機器學習庫

1. scikit-learn的介紹和典型使用

2. 損失函數(shù)的繪制

3. 多種數(shù)學曲線

4. 多項式擬合

5. 快速傅里葉變換FFT

6. 奇異值分解SVD

7. Soble/Prewitt/Laplacian算子與卷積網(wǎng)絡

8. 卷積與(指數(shù))移動平均線

9. 股票數(shù)據(jù)分析

模塊六 Python基礎3 - 數(shù)據(jù)清洗和特征選擇

1. 實際生產(chǎn)問題中算法和特征的關系

2. 股票數(shù)據(jù)的特征提取和應用

3. 一致性檢驗

4. 缺失數(shù)據(jù)的處理

5. 環(huán)境數(shù)據(jù)異常檢測和分析

6. 模糊數(shù)據(jù)查詢和數(shù)據(jù)校正方法、算法、應用

7. 樸素貝葉斯用于鳶尾花數(shù)據(jù)

8. GaussianNB/MultinomialNB/BernoulliNB

9. 樸素貝葉斯用于18000+篇/Sogou新聞文本的分類

模塊七 回歸

1. 線性回歸

2. Logistic/Softmax回歸

3. 廣義線性回歸

4. L1/L2正則化

5. Ridge與LASSO

6. Elastic Net

7. 梯度下降算法:BGD與SGD

8. 特征選擇與過擬合

模塊八 Logistic回歸

1. Sigmoid函數(shù)的直觀解釋

2. Softmax回歸的概念源頭

3. Logistic/Softmax回歸

4. 最大熵模型

5. K-L散度

6. 損失函數(shù)

7. Softmax回歸的實現(xiàn)與調(diào)參

模塊九 回歸實踐

1. 機器學習sklearn庫介紹

2. 線性回歸代碼實現(xiàn)和調(diào)參

3. Softmax回歸代碼實現(xiàn)和調(diào)參

4. Ridge回歸/LASSO/Elastic Net

5. Logistic/Softmax回歸

6. 廣告投入與銷售額回歸分析

7. 鳶尾花數(shù)據(jù)集的分類

8. 交叉驗證

9. 數(shù)據(jù)可視化

模塊十 決策樹和隨機森林

1. 熵、聯(lián)合熵、條件熵、KL散度、互信息

2. 最大似然估計與最大熵模型

3. ID3、C4.5、CART詳解

4. 決策樹的正則化

5. 預剪枝和后剪枝

6. Bagging

7. 隨機森林

8. 不平衡數(shù)據(jù)集的處理

9. 利用隨機森林做特征選擇

10. 使用隨機森林計算樣本相似度

11. 數(shù)據(jù)異常值檢測

模塊十一 隨機森林實踐

1. 隨機森林與特征選擇

2. 決策樹應用于回歸

3. 多標記的決策樹回歸

4. 決策樹和隨機森林的可視化

5. 葡萄酒數(shù)據(jù)集的決策樹/隨機森林分類

6. 波士頓房價預測

模塊十二 提升

1. 提升為什么有效

2. 梯度提升決策樹GBDT

3. XGBoost算法詳解

4. Adaboost算法

5. 加法模型與指數(shù)損失

模塊十三 提升實踐

1. Adaboost用于蘑菇數(shù)據(jù)分類

2. Adaboost與隨機森林的比較

3. XGBoost庫介紹

4. Taylor展式與學習算法

5. KAGGLE簡介

6. 泰坦尼克乘客存活率估計

模塊十四 SVM

1. 線性可分支持向量機

2. 軟間隔的改進

3. 損失函數(shù)的理解

4. 核函數(shù)的原理和選擇

5. SMO算法

6. 支持向量回歸SVR

模塊十五 SVM實踐

1. libSVM代碼庫介紹

2. 原始數(shù)據(jù)和特征提取

3. 葡萄酒數(shù)據(jù)分類

4. 數(shù)字圖像的手寫體識別

5. SVR用于時間序列曲線預測

6. SVM、Logistic回歸、隨機森林三者的橫向比較

模塊十六 聚類(一)

1. 各種相似度度量及其相互關系

2. Jaccard相似度和準確率、召回率

3. Pearson相關系數(shù)與余弦相似度

4. K-means與K-Medoids及變種

5. AP算法(Sci07)/LPA算法及其應用

模塊十七 聚類(二)

1. 密度聚類DBSCAN/DensityPeak(Sci14)

2. DensityPeak(Sci14)

3. 譜聚類SC

4. 聚類評價AMI/ARI/Silhouette

5. LPA算法及其應用

模塊十八 聚類實踐

1. K-Means++算法原理和實現(xiàn)

2. 向量量化VQ及圖像近似

3. 并查集的實踐應用

4. 密度聚類的代碼實現(xiàn)

5. 譜聚類用于圖片分割

模塊十九 EM算法

1. 最大似然估計

2. Jensen不等式

3. 樸素理解EM算法

4. 精確推導EM算法

5. EM算法的深入理解

6. 混合高斯分布

7. 主題模型pLSA

模塊二十 EM算法實踐

1. 多元高斯分布的EM實現(xiàn)

2. 分類結果的數(shù)據(jù)可視化

3. EM與聚類的比較

4. Dirichlet過程EM

5. 三維及等高線等圖件的繪制

6. 主題模型pLSA與EM算法

模塊二十一 主題模型LDA

1. 貝葉斯學派的模型認識

2. Beta分布與二項分布

3. 共軛先驗分布

4. Dirichlet分布

5. Laplace平滑

6. Gibbs采樣詳解

模塊二十二 LDA實踐

1. 網(wǎng)絡爬蟲的原理和代碼實現(xiàn)

2. 停止詞和高頻詞

3. 動手自己實現(xiàn)LDA

4. LDA開源包的使用和過程分析

5. Metropolis-Hastings算法

6. MCMC

7. LDA與word2vec的比較

8. TextRank算法與實踐

模塊二十三 隱馬爾科夫模型HMM

1. 概率計算問題

2. 前向/后向算法

3. HMM的參數(shù)學習

4. Baum-Welch算法詳解

5. Viterbi算法詳解

6. 隱馬爾科夫模型的應用優(yōu)劣比較

模塊二十四 HMM實踐

1. 動手自己實現(xiàn)HMM用于中文分詞

2. 多個語言分詞開源包的使用和過程分析

3. 文件數(shù)據(jù)格式UFT-8、Unicode

4. 停止詞和標點符號對分詞的影響

5. 前向后向算法計算概率溢出的解決方案

6. 發(fā)現(xiàn)新詞和分詞效果分析

7. 高斯混合模型HMM

8. GMM-HMM用于股票數(shù)據(jù)特征提取

模塊二十五 課堂提問與互動討論

張老師

張老師:阿里大數(shù)據(jù)高級專家,國內(nèi)資深的Spark、Hadoop技術專家、虛擬化專家,對HDFS、MapReduce、HBase、Hive、Mahout、Storm、spark和openTSDB等Hadoop生態(tài)系統(tǒng)中的技術進行了多年的深入的研究,更主要的是這些技術在大量的實際項目中得到廣泛的應用,因此在Hadoop開發(fā)和運維方面積累了豐富的項目實施經(jīng)驗。近年主要典型的項目有:某電信集團網(wǎng)絡優(yōu)化、中國移動某省移動公司請賬單系統(tǒng)和某省移動詳單實時查詢系統(tǒng)、中國銀聯(lián)大數(shù)據(jù)數(shù)據(jù)票據(jù)詳單平臺、某大型銀行大數(shù)據(jù)記錄系統(tǒng)、某大型通信運營商全國用戶上網(wǎng)記錄、某省交通部門違章系統(tǒng)、某區(qū)域醫(yī)療大數(shù)據(jù)應用項目、互聯(lián)網(wǎng)公共數(shù)據(jù)大云(DAAS)和構建游戲云(Web Game Daas)平臺項目等。

我要報名

在線報名:Python大數(shù)據(jù)核心技術實戰(zhàn)(蘇州)

主站蜘蛛池模板: 缠绕机|缠绕膜包装机|缠绕包装机-上海晏陵智能设备有限公司 | 刑事律师_深圳著名刑事辩护律师_王平聚【清华博士|刑法教授】 | 变位机,焊接变位机,焊接变位器,小型变位机,小型焊接变位机-济南上弘机电设备有限公司 | 东莞猎头公司_深圳猎头公司_广州猎头公司-广东万诚猎头提供企业中高端人才招聘服务 | 胶水,胶粘剂,AB胶,环氧胶,UV胶水,高温胶,快干胶,密封胶,结构胶,电子胶,厌氧胶,高温胶水,电子胶水-东莞聚力-聚厉胶粘 | 山东钢格板|栅格板生产厂家供应商-日照森亿钢格板有限公司 | 磁力反应釜,高压釜,实验室反应釜,高温高压反应釜-威海自控反应釜有限公司 | 学叉车培训|叉车证报名|叉车查询|叉车证怎么考-工程机械培训网 | 转子泵_凸轮泵_凸轮转子泵厂家-青岛罗德通用机械设备有限公司 | 锌合金压铸-铝合金压铸厂-压铸模具-冷挤压-誉格精密压铸 | 熔体泵_熔体出料泵_高温熔体泵-郑州海科熔体泵有限公司 | 周易算网-八字测算网 - 周易算网-宝宝起名取名测名字周易八字测算网 | 机房监控|动环监控|动力环境监控系统方案产品定制厂家 - 迈世OMARA | 广州工业氧气-工业氩气-工业氮气-二氧化碳-广州市番禺区得力气体经营部 | 集装袋吨袋生产厂家-噸袋廠傢-塑料编织袋-纸塑复合袋-二手吨袋-太空袋-曹县建烨包装 | 低温柔性试验仪-土工布淤堵-沥青车辙试验仪-莱博特(天津)试验机有限公司 | 超声波焊接机,振动摩擦焊接机,激光塑料焊接机,超声波焊接模具工装-德召尼克(常州)焊接科技有限公司 | 辽宁资质代办_辽宁建筑资质办理_辽宁建筑资质延期升级_辽宁中杭资质代办 | 商用绞肉机-熟肉切片机-冻肉切丁机-猪肉开条机 - 广州市正盈机械设备有限公司 | 首页|光催化反应器_平行反应仪_光化学反应仪-北京普林塞斯科技有限公司 | 聚氨酯复合板保温板厂家_廊坊华宇创新科技有限公司 | 电缆接头_防水接头_电缆防水接头_防水电缆接头_上海闵彬 | 天一线缆邯郸有限公司_煤矿用电缆厂家_矿用光缆厂家_矿用控制电缆_矿用通信电缆-天一线缆邯郸有限公司 | 空气能采暖,热泵烘干机,空气源热水机组|设备|厂家,东莞高温热泵_正旭新能源 | 气动隔膜泵厂家-温州永嘉定远泵阀有限公司 | 纸塑分离机-纸塑分离清洗机设备-压力筛-碎浆机厂家金双联环保 | 档案密集柜_手动密集柜_智能密集柜_内蒙古档案密集柜-盛隆柜业内蒙古密集柜直销中心 | 电车线(用于供电给电车的输电线路)-百科| 置顶式搅拌器-优莱博化学防爆冰箱-磁驱搅拌器-天津市布鲁克科技有限公司 | 汽车整车综合环境舱_军标砂尘_盐雾试验室试验箱-无锡苏南试验设备有限公司 | 广东恩亿梯电源有限公司【官网】_UPS不间断电源|EPS应急电源|模块化机房|电动汽车充电桩_UPS电源厂家(恩亿梯UPS电源,UPS不间断电源,不间断电源UPS) | 3dmax渲染-效果图渲染-影视动画渲染-北京快渲科技有限公司 | 螺杆式冷水机-低温冷水机厂家-冷冻机-风冷式-水冷式冷水机-上海祝松机械有限公司 | 耐压仪-高压耐压仪|徐吉电气 | 中国产业发展研究网 - 提供行业研究报告 可行性研究报告 投资咨询 市场调研服务 | 热回收盐水机组-反应釜冷水机组-高低温冷水机组-北京蓝海神骏科技有限公司 | 数控专用机床,专用机床,自动线,组合机床,动力头,自动化加工生产线,江苏海鑫机床有限公司 | 山东艾德实业有限公司| 智能电表|预付费ic卡水电表|nb智能无线远传载波电表-福建百悦信息科技有限公司 | 电动垃圾车,垃圾清运车-江苏速利达机车有限公司 | 广西正涛环保工程有限公司【官网】 |